
POWDAX® E500シリーズ

薄膜での高い絶縁性

100 µmの薄膜領域から 8kV以上の絶縁性能を発揮! 8.0 縁破壊電圧 6.0 5.0 4.0 3.0 ∕₹ パウダックス E500 2.0 一般絶縁粉体A 1.0 -般絶縁粉体B 0.0 125 膜厚/μm ※測定条件(印加条件)500V/sec. (閾値)5mA (n数)各8

高エッジカバー性

速硬化型のエポキシ樹脂を用いた設計により エッジの高力バーリング性を実現

※焼付180℃×15分、静電スプレー塗装 部材:角棒(10mm×10mm×100mm)

気泡制御による高信頼性

(装置設定上限は10kVであり、100μmで10kV以上を示すことも確認済)


粒度分布、溶融粘度を調整することで 塗膜中の気泡が少ない平滑な塗膜を形成 し、安定した絶縁性能を発揮

各コンポートネント要求事項に適した 商品ラインナップ

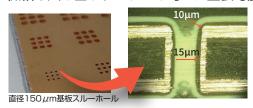
自動車や各種電子部品に採用

※測定限界を8kVに設定した場合のデータ

	要因	イメージ	対策
7,	【塗装】 エアの残存	粒子間のエアが残存	塗料の粒径抑制 溶融時間、溶融粘度の調整
	【塗料成分】 脱離ガスの残存	硬化時に発生する脱離ガスの残存 抜けずに残存 表面に残存 塗 膜	脱離物の少ない硬化系選定 溶融時間、溶融粘度の調整
	【素材】 エア・水分の残存	基材凹凸由来のエア残存、水分揮発 塗膜 水分 エア 基材	溶融時間、溶融粘度の調整

バスバー(採用品)

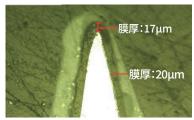
絶縁電着塗料 超薄膜で高い絶縁性・複雑な形状にも適用

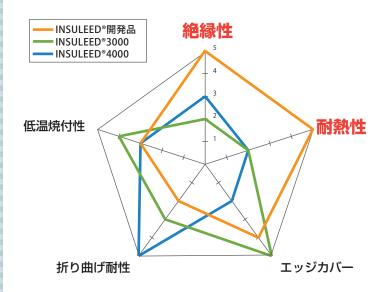

INSULEED® シリーズ

エッジカバー性タイプ

INSULEED®3000

つきまわり性 複雑形状に適用

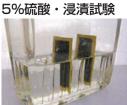

▼ 微細な穴も塞がずエッジも均一に塗装可能!


▼ 狭隙部にも浸透し皮膜を形成!

■ エッジカバー性

※エッジ角25°のカッターナイフの刃に塗装

可撓性タイプ


INSULEED®4000

■可撓性

樹脂設計技術(変性ポリアミドイミド樹脂)により

高い可撓性 (伸び率7%) 耐熱性 絶縁性 が成立

■耐薬品性

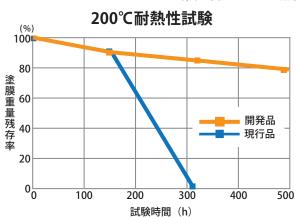
浸漬後

室温×1200時間

車載電装品での実績

試験基材:タフピッチ銅版 使用塗料: INSULEED®4100(20 µm)

変化なし


開発品

耐熱性を強化した電着塗料開発品

電着塗料で厚膜化:40~100μmまで 幅広く対応 <適用事例>

特殊な形状のコイルにも適用

"貼る絶縁"から

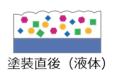
"塗る絶縁"へ

高密着性×耐久性×均一性

基材・関連部材と強固に密着、セル缶のエッジにも追随

Point ① 工程簡素化

UV照射で秒単位硬化 自動塗布装置の適用


Point ②省エネ、安全

UV-LEDランプ適応で消費電力↓ 安全性に配慮した材料選定

UV硬化システムの原理

固体

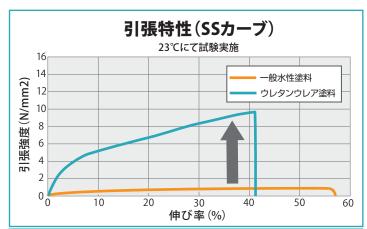
塗装見本

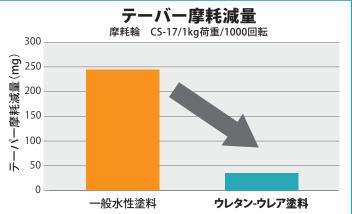
絶縁塗料のラインナップ

塗料タイプ	絶縁粉体塗料		絶縁電着塗料			UV硬化型塗料
商品名	POWDAX® E500 シリーズ	POWDAX® 開発品	INSULEED®3000 シリーズ	INSULEED®4000 シリーズ	INSULEED® 開発品	USS01 (開発品)
メイン樹脂	エポキシ樹脂	エポキシ樹脂	特殊変性ノボラック エポキシ樹脂	変性ポリアミドイミド樹脂	特殊変性エポキシ樹脂	光硬化性樹脂
主な特長	高エッジカバー性	耐熱性	高エッジカバー性	折り曲げ耐性	耐熱性・厚膜対応	即硬化、高密着性 均一塗布性
推奨膜厚	100µm∼	200 µ m∼	30 µ m (20∼40 µ m)	40 μ m (20~40 μ m)	40 μ m (40∼100 μ m)	75 μ m
推奨焼付条件	180°C×10分 ※必要に応じて予熱:150~250°C	200℃×20分 ※予熱必須:150~250℃	190~230°C×20~60分	90℃×5分 →160℃×5分 →265℃×35分	105℃×5分 →165℃×5分 →260℃×10分	焼付不要 (UV LEDランプ照射のみ)
絶縁破壊電圧	AC 8kV (膜厚100 <i>μ</i> m)	AC 10kV以上 (膜厚200 <i>μ</i> m)	AC 2kV (膜厚40 <i>μ</i> m)	AC 3kV (膜厚40μm)	AC 5kV (膜厚40 <i>μ</i> m)	AC 7kV (膜厚75 <i>μ</i> m)
耐熱性	F種 (155℃) 相当 (JIS法) ※	H種(180℃)相当 (JIS法)※	F種(155℃)相当 (JIS法)※	E種(120℃)相当 (JIS法)※	200℃×500h後 絶縁破壊電圧 AC 3kV	No Data
折り曲げ耐性	$180^\circ0$ mm $arphi$ にて 割れ剥離なし	No Data	90°2mm φ にて 割れ発生	180° 2mmφにて 割れ剥離なし	45°2mmφにて 割れ剥離なし	$180^\circ0$ mm $arphi$ にて 割れ剥離なし

[※]当社促進試験より

ポリウレタン-ウレア


凝集エネルギーが高いウレタン-ウレア 結合を利用


結合の凝集エネルギー

結合	KJ/mol
メチレン(一CH2一)	4.94
エーテル (一0一)	3.35
エステル (-C00-)	18.0
カーボネート(一OCOO一)	17.6
ウレタン (―NHC00―)	26.4
ウレア(一NHCONH一)	50.2

ウレア構造 R-NH₂ + R' -NCO R-NH-CO-NH-R'

ポリウレタン-ウレア樹脂の適用により、 強靱性と柔軟性の両立を実現! 耐久性、防食性、耐薬品性の付与が可能

<実用例>

遮熱道路用塗料 ATTSU-9® ROAD(U)

●耐久性:耐摩耗性(強靭性)/密着性(柔軟性)の両立 耐候性、防食性、耐薬品性に優れる

・施工性:ウレア反応、ウレタン反応による超速乾性 超厚膜塗装(数百µm)が可能

●環境 :無溶剤、低臭気

<応用例>

土木建設機械、大型構造物、道路など

オルガ®1000-1H クリヤー

用途例

ドラム缶

特長

- ① 耐酸、耐アルカリ等の耐薬品性に優れる
- ② 耐溶剤性、耐ガス性に優れる
- ③ 塗膜は硬く、密着性に優れる

標準塗装条件

塗装方法 項目	エアスプレー	エアレス塗装		
使用シンナー	ニッペシンナー714	ニッペシンナー714		
塗装粘度 (岩田カップ20℃)	16~20秒	20~30秒		
希釈率 (外割wt%)	30~40	25~35		
膜厚 (µm)	18~23	18~23		
セッティング時間	10分			
焼付け条件	180℃×30分(被塗物温度×キープ時間)			
理論塗付量	56~72g/m²			

性能表

試験方法	性能・結果	試験方法・条件		
鏡面光沢度	60	JIS K 5600 4-7による60度鏡面光沢度		
鉛筆引っかき値	2H	JIS K 5600 5-4 (傷つき判定) による		
付着性	100/100	JIS K 5600 5-6 碁盤目テープ法による1mm間隔		
耐衝擊性	合格	JIS K 5600 5-3(デュポン式)によるφ1/2×500g×500cm		
エリクセン	合格	JIS K 5600 5-2(定距離法5mm押し出し)による		
耐屈曲性	8mm <i>¢</i>	JIS K 5600 5-1による 180°/秒、折曲げ		
耐酸性	異常なし	JIS K 5600 6-1による10%硫酸溶液 20℃×400時間		
耐アルカリ性	異常なし	JIS K 5600 6-1による20%苛性ソーダ溶液 20℃×400時間		
耐溶剤性	異常なし	トルエン20°C×400時間 酢酸エチル 同上		

危険

1.引火性液体

2.有機溶剤中毒の恐れあり

3.健康に有害な物質を含有

表示

危険物表示	第1石油類合成樹脂クリヤー塗料
危険等級	II
有機溶剤区分	第二種等有機溶剤含有物
有害物質表示	エチルベンゼン、メチルイソブチルケトン

詳細な内容が必要な時には、製品安全データシート(SDS)をご参照ください。本商品は日本国内での使用に限定し、輸出される場合は事前にご相談ください。

インライン向け耐火塗料

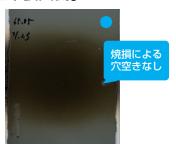
- ・硬化反応型設計によって、塗膜物性向上と短時間乾燥を両立することで インライン塗装を可能にしました
- ・現場施工の省力化によって、工期短縮とコスト削減に貢献します

燃焼試験中

・膜厚設計によって、耐火性能レベルを調整することで、幅広い用途でご使用 いただけます

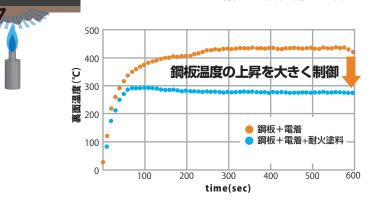
【試験方法】

基材•


耐火塗料

 $(300\sim500 \,\mu\,\text{m})$

テストパネルの下からガスバーナーで1000℃×10min 直接火を当て裏面最高温度を測定


【耐火塗料塗布裏面側】

鋼板+電着

鋼板+電着+耐火塗料

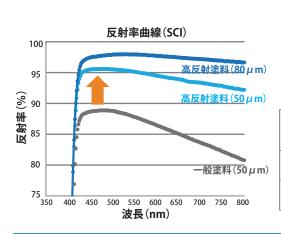
塗装仕様とシートとの比較

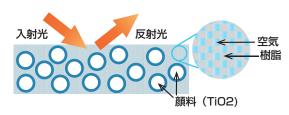
燃焼試験前

	難燃断熱シート	開発品 耐火塗料
厚み	1~2mm	0.3~0.6mm
平米重量	1.5mmの場合、3kg/㎡	0.4mmの場合、0.8kg/㎡
断熱性(底面からの燃焼試験)	1000℃×10分後、 裏面温度500℃以下	1000℃×10分後、 裏面温度350℃以下
燃焼時の膜膨脹	数倍~数十倍	5~10倍(1.5mm~6mm)

各種用途に合わせて膜厚や発泡倍率を調整可能

用途例:現場施工型耐火塗料代替、被覆材や耐火シートの代替、車両部品、バッテリーパックなど

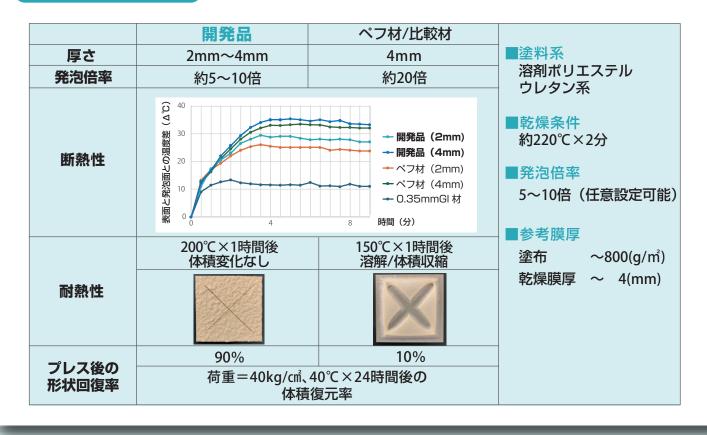

高反射塗料/発泡断熱塗料


高反射塗料

反射率98%以上!

塗膜中に空気層を取り込む技術により、可視領域において 高い反射性を有する高反射塗膜を実現!

究極の白さを追求します



	仕様(2コート)			反射率 (550nm)	甘松口効羊
	基材	下塗り	上塗り	(550nm)	基盤目密着
高反射塗料(50 μ m)	亜鉛めっき鋼板	15 μ m	35 μ m	95%	100/100
高反射塗料(80 µ m)	亜鉛めっき鋼板	15μm	65 μ m	98%	100/100

発泡断熱塗料

<効果> 結露防止 断熱性能 高耐熱性

